f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

NAG C Library Function Document

nag_dtrsen (f08qgc)

1 Purpose

nag_dtrsen (f08qgc) reorders the Schur factorization of a real general matrix so that a selected cluster of
eigenvalues appears in the leading elements or blocks on the diagonal of the Schur form. The function
also optionally computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant
subspace.

2 Specification

void nag_dtrsen (Nag_OrderType order, Nag_JobType job, Nag_ComputeQType compq,
const Boolean select[], Integer n, double t[], Integer pdt, double q[],
Integer pdq, double wr[], double wi[]l, Integer *m, double *s, double *sep,
NagError xfail)

3 Description

nag_dtrsen (f08qgc) reorders the Schur factorization of a real general matrix A = QT'Q”, so that a selected
cluster of eigenvalues appears in the leading diagonal elements or blocks of the Schur form.

The reordered Schur form 7 is computed by an orthogonal similarity transformation: T = ZTZ.
Optionally the updated matrix Q of Schur vectors is computed as Q = QZ, giving A = QTQ".

Let T = (T()“ ;12), where the selected eigenvalues are precisely the eigenvalues of the leading m by
22

m submatrix T'j;. Let Q be correspondingly partitioned as (Q; @Q,) where Q, consists of the first m
columns of). Then AQ; = @,T;, and so the m columns of @}; form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the function also computes estimates of the reciprocal condition numbers of the average of the
cluster of eigenvalues and of the invariant subspace.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input

On entry: indicates whether condition numbers are required for the cluster of eigenvalues and/or the
invariant subspace, as follows:

if job = Nag_DoNothing, no condition numbers are required;

if job = Nag_EigVals, only the condition number for the cluster of eigenvalues is computed;

[NP3645/7] f08qgc.1

f08qgc NAG C Library Manual

if job = Nag_Subspace, only the condition number for the invariant subspace is computed;

if job = Nag_DoBoth, condition numbers for both the cluster of eigenvalues and the
invariant subspace are computed.

Constraint: job = Nag_DoNothing, Nag_EigVals, Nag_Subspace or Nag_DoBoth.

3: compq — Nag ComputeQType Input
On entry: indicates whether the matrix) of Schur vectors is to be updated, as follows:
if compq = Nag_UpdateSchur, the matrix () of Schur vectors is updated;
if compq = Nag_NotQ, no Schur vectors are updated.
Constraint: compq = Nag_UpdateSchur or Nag_NotQ.

4: select[dim| — const Boolean Input
Note: the dimension, dim, of the array select must be at least max(1,n).

On entry: the eigenvalues in the selected cluster. To select a real eigenvalue), select]j — 1] must
be set TRUE. To select a complex conjugate pair of eigenvalues A; and A;,; (corresponding to a 2
by 2 diagonal block), select[j — 1] and/or select]j] must be set to TRUE. A complex conjugate pair
of eigenvalues must be either both included in the cluster or both excluded. See also Section 8.

5: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

6: t[dim] — double Input/Output
Note: the dimension, dim, of the array t must be at least max(1, pdt x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix 7T is stored in t[(j — 1) x pdt+ i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the n by n upper quasi-triangular matrix 7" in canonical Schur form, as returned by
nag_ dhseqr (f08pec). See also Section 8.

On exit: T is overwritten by the updated matrix 7.

7: pdt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt > max(1,n).

8: q[dim] — double Input/Output

Note: the dimension, dim, of the array q must be at least
max(1, pdq x n) when compq = Nag_UpdateSchur;
1 when compq = Nag_NotQ.

If order = Nag_ColMajor, the (7, j)th element of the matrix @ is stored in q[(j — 1) x pdq + ¢ — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q[(i —1) x pdq +j — 1].

On entry: if compq = Nag_UpdateSchur, q must contain the n by n orthogonal matrix () of Schur
vectors, as returned by nag_dhseqr (fO8pec).

On exit: if compq = Nag_UpdateSchur, q contains the updated matrix of Schur vectors; the first m
columns of) form an orthonormal basis for the specified invariant subspace.

q is not referenced if compq = Nag_NotQ.

f08qgc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

9: pdq — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:
if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag NotQ, pdq > 1.

10: wr[dim] — double Output

11: wi[dim] — double Output

Note: the dimensions, dim, of the arrays wr and wi must each be at least max(1,n).
On exit: the real and imaginary parts, respectively, of the reordered eigenvalues of 7. The
eigenvalues are stored in the same order as on the diagonal of T'; see Section 8 for details. Note
that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly
from its value before reordering.

12: m — Integer * Output
On exit: m, the dimension of the specified invariant subspace. The value of m is obtained by
counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of
eigenvalues (see select); 0 < m < n.

13: s — double * Output
On exit: if job = Nag_EigVals or Nag_DoBoth, s is a lower bound on the reciprocal condition
number of the average of the selected cluster of eigenvalues. If m =0 or n, s = 1; if fail = 1 (see
Section 6), s is set to zero.

s is not referenced if job = Nag_DoNothing or Nag_Subspace.

14: sep — double * Output
On exit: if job = Nag_Subspace or Nag_DoBoth, sep is the estimated reciprocal condition number
of the specified invariant subspace. If m = 0 or n, sep = ||T||; if fail = 1 (see Section 6), sep is set
to zero.
sep is not referenced if job = Nag_DoNothing or Nag_EigVals.

15: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).

Constraint: n > 0.

On entry, pdt = (value).

Constraint: pdt > 0.

On entry, pdq = (value).

Constraint: pdq > 0.
NE_INT 2

On entry, pdt = (value), n = (value).
Constraint: pdt > max(1,n).

[NP3645/7] f08qgc.3

f08qgc NAG C Library Manual

NE_ENUM_INT_2
On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag NotQ, pdq > 1.

NE_REORDER

The reordering of T" failed because a selected eigenvalue was too close to an eigenvalue which was
not selected; this error exit can only occur if at least one of the eigenvalues involved was complex.
The problem is too ill-conditioned: consider modifying the selection of eigenvalues so that
eigenvalues which are very close together are either all included in the cluster or all excluded. On
exit, 7' may have been partially reordered, but wr, wi and @ (if requested) are updated consistently
with T'; s and sep (if requested) are both set to zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix T is similar to a matrix T + E, where
1Ell, = 0T,
and € is the machine precision.

S cannot underestimate the true reciprocal condition number by more than a factor of \/min(m,n —m).

sep may differ from the true value by \/m The angle between the computed invariant subspace
. O(e)]|A
and the true subspace is M
sep

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general
changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is
sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block
to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real. The
values of real eigenvalues however are never changed by the re-ordering.

8 Further Comments

The input matrix 7" must be in canonical Schur form, as is the output matrix 7. This has the following
structure.

If all the computed eigenvalues are real, T' is upper triangular, and the diagonal elements of T are the
eigenvalues; wrfi — 1] =¢; for i = 1,2,...,n and wi[i — 1] = 0.0.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks.
Each diagonal block has the form
(ﬁn‘ ~%i,i+l) _ (04 ﬂ)
tivii o tiv1in v o«

where (7 < 0. The corresponding eigenvalues are a=++/By; wrli — 1] =wr[i] = a;
wili — 1] = ++/|B7]; wi[i] = —wi[i — 1].

108qgc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

The complex analogue of this function is nag_ztrsen (f08quc).

9 Example

To reorder the Schur factorization of the matrix A = QTQ" such that the two real eigenvalues appear as
the leading elements on the diagonal of the reordered matrix 7', where

0.7995 —0.1144 0.0060 0.0336

T_ 0.0000 —0.0994 0.2478 0.3474

“ | 0.0000 —0.6483 —0.0994 0.2026

0.0000 0.0000 0.0000 —0.1007

and

0.6551 0.1037 0.3450 0.6641

Q= 0.5236 —0.5807 —-0.6141 —0.1068

| —0.5362 —0.3073 —0.2935 0.7293

0.0956 0.7467 —0.6463 0.1249

The original matrix A is given in nag_dorghr (f08nfc).

9.1
/*

*

* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7,

*/

Program Text

nag_dtrsen (£08ggc) Example Program.

2001.

#include
#include
#include
#include
#include

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf08.h>
<nagx04.h>

int main(void)

{
/* Scalars */
Integer i, j, m, n, pdq, pdt, select_len, w_len;
Integer exit_status=0;
double s, sep;

NagError fail;
Nag_OrderType order;
/* Arrays */
double *g=0, =*t=0,
char sel_char[2];
Boolean #*select=0;

*wi=0, *wr=0;

#ifdef NAG_COLUMN_MAJOR

#define T(I,J) t[(J-1)*pdt + I - 1]

#define Q(I,J) ql(J-1)#*pdg + I - 1]
order = Nag_ColMajor;

#else

#define T(I,J) t[(I-1)*pdt + T - 1]

#define Q(I,J) ql(I-1)#*pdg + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08ggc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");
Vscanf ("$1d%*["\n] ",

#ifdef NAG_COLUMN_MAJOR
pdg = n;

&n) ;

[NP3645/7] 108qgc.5

f08qgc NAG C Library Manual

pdt = n;
#else

pdg = n;

pdt = n;
#endif

w_len =n;
select_len = n;

/* Allocate memory */

if (!(g = NAG_ALLOC(n * n, double)) ||
wi = NAG_ALLOC(w_len, double)) ||

wr = NAG_ALLOC(w_len, double)) ||

select = NAG_ALLOC(select_len, Boolean)) ||

1(
! (
1(
I (t = NAG_ALLOC(n * n, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* Read T from data file =*/
for (i = 1; 1 <= n; ++1)
{

for (j = 1; j <= n; ++3)
Vscanf ("s1f", &T(i,3));

3

Vscanf ("s*[*\n] ");

for (i = 1; 1 <= n; ++1)
{

for (j = 1; j <= n; ++3)
Vscanf ("$1f", &Q(i,j));
}
Vscanf ("$* ["\n
for (i = 0; 1
{
Vscanf (" %1s ", sel_char);
if (*(unsigned char =*)sel_char == 'F’)
select[i] = FALSE;
else
select[i] = TRUE;

o

]
< n; ++1i)

}
Vscanf ("%s*["\n] ");

/* Reorder the Schur factorization T */
f08ggc(order, Nag_DoBoth, Nag_UpdateSchur, select, n, t, pdt,
q, pdq, wr, wi, &m, &s, &sep, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ggc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print reordered Schur form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
t, pdt, "Reordered Schur form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print basis of invariant subspace =*/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, g, pdq,
"Basis of invariant subspace", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print condition number estimates */

08qgc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vprintf ("\n Condition number estimate of the selected cluster of"

eigenvalues = %10.2e\n",1.0/s);

Vprintf ("\n Condition number estimate of the specified invariant"

subspace = %10.2e\n",1.0/sep) ;

END:

if (g) NAG_FREE(q);

if (t) NAG_FREE(t);

if (wi) NAG_FREE (wi);

if (wr) NAG_FREE (wr) ;

if (select) NAG_FREE (select);

return exit_status;

9.2 Program Data

f08ggc Example Program Data

.7995 -0.1144 0.0060
.0000 -0.0994 0.2478
.0000 -0.6483 -0.0994
.0000 0.0000 0.0000
.6551 0.1037 0.3450
.5236 -0.5807 -0.6141
.5362 -0.3073 -0.2935
.0956 0.7467 -0.6463
F F T

lcNoNoNoNoNoNoNe)

HOOOOOOOON

9.3 Program Results

f08ggc Example Program Result

Reordered Schur form

1 2 3
1 0.7995 -0.0059 0.0751
2 -0.0000 -0.1007 -0.3936
3 0.0000 0.0000 -0.0994
4 0.0000 0.0000 -0.3133
Basis of invariant subspace

1 2
1 0.6551 0.1211
2 0.5236 0.3286
3 -0.5362 0.5974
4 0.0956 0.7215

Condition number estimate of

Condition number estimate of

S

:Value of N
.0336
.3474
.2026
.1007 :End of matrix T
.6641
.1068
.7293
.1249 :End of matrix Q
:End of SELECT

-0.0927
0.3569
0.5128

-0.0994

the selected cluster of eigenvalues =

the specified invariant subspace =

f08qgc

1.75e+00

3.22e+00

[NP3645/7]

f08qgc.7 (last)

	f08qgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compq
	select
	n
	t
	pdt
	q
	pdq
	wr
	wi
	m
	s
	sep
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_REORDER
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

